

cmsplugin-markup’s documentation

An extendable markup content plugin for Django CMS [https://www.django-cms.org/]. It allows you to use
various markup languages for content. It is extendable through its own markup
plugin system so additional markup languages can be supported. By default it
supports Markdown [http://daringfireball.net/projects/markdown/], reST [http://docutils.sourceforge.net/rst.html], Textile [http://textile.sitemonks.com/] and Creole [https://code.google.com/p/python-creole/] markup languages.

Installation

You should install it somewhere Django can find it and add cmsplugin_markup
to INSTALLED_APPS. You can also configure CMS_MARKUP_OPTIONS setting to
configure which markup plugins you want available in Django CMS.

To install it from PyPi [http://pypi.python.org/pypi] run:

pip install cmsplugin-markup

To install it from source code run:

python setup.py install

If you want preview functionality in admin to work you have to add something
like the following to your urls.py file:

(r'^admin/cms/plugin/markup/', include('cmsplugin_markup.urls')),

This will also allow markup plugins to handle their own additional URLs under
above base URL.

Add this to your settings:

MIGRATION_MODULES = {
 'cmsplugin_markup': 'cmsplugin_markup.migrations_django',
}
CMS_MARKUP_OPTIONS = (
 'cmsplugin_markup.plugins.markdown',
 'cmsplugin_markup.plugins.textile',
 'cmsplugin_markup.plugins.restructuredtext',
 'cmsplugin_markup.plugins.creole',
)
CMS_MARKUP_RENDER_ALWAYS = True

CMS_MARKDOWN_EXTENSIONS = ()

Markup Plugins

If you need support for some other markup language, you can extend this plugin
through its own markup plugin API.

For example, there exists a plugin [https://github.com/mitar/cmsplugin-markup] for Trac [http://trac.edgewall.org/] wiki engine with powerful markup
language (with its own macros and plugins).

Source Code and Issue Tracker

For development GitHub [https://github.com] is used, so source code and issue tracker is found
there [https://github.com/mitar/cmsplugin-markup].

Indices and tables

	Index

	Search Page

Index

Markup Plugin API

At its core, cmsplugin-markup is built around the idea of markup plugins which
can implement different markup implementation for parsing user input. By
default it comes with Markdown [http://daringfireball.net/projects/markdown/], reST [http://docutils.sourceforge.net/rst.html] and Textile [http://textile.sitemonks.com/] plugins available in the
cmsplugin_markup/plugins/ directory.

Specifiying Available Plugins

To determine which markup plugins are available to the user, cmsplugin-markup
looks for a setting CMS_MARKUP_OPTIONS. It expects this to be a tuple in
this format:

CMS_MARKUP_OPTIONS = (
 'cmsplugin_markup.plugins.markdown',
 'cmsplugin_markup.plugins.textile',
 'cmsplugin_markup.plugins.restructuredtext',
)

Each entry should be a string and should be a complete path to a Python module
that contains the plugin.

You can also configure what is a default value for markups which support
dynamically rendered output, using CMS_MARKUP_RENDER_ALWAYS setting (by
default True).

API

To be used as a markup plugin, a Python module must contain a class that
defines required methods and attributes. This class must be named Markup.
For example:

from cmsplugin_markup.plugins import MarkupBase

class Markup(MarkupBase):
 name = 'Human Readable Name for Plugin'
 identifier = 'internal-plugin-identifier'

 def parse(self, value, context=None, placeholder=None):
 return value

This barebones class contains all the required pieces to work.

The name variable is a human readable name and may be of any length. This
is the name that will be presented to the user as the option to choose the
markup language from.

The identifier variable is stored as a CharField and anything that is
allowed in a CharField is allowed in this. It must be unique across all the
installed markup plugins and may be at most 20 characters long.

The parse function must accept self, and a value argument. It must accept
also possible Django template rendering context and current placeholder. Those
are given when rendering markup every time the page is displayed is enabled; to
give more information about the context and location in which they are
rendered. This function is where you will implement the actual rendering of
user’s input.

There are some additional methods and an attribute if markup supports adding
text plugins. In this case text_enabled_plugins class attribute should be
set to True and the following methods should be defined.

plugin_id_list(self, text) should return the list of plugins inserted and
currently used in the markup text.

replace_plugins(self, text, id_dict) should replace references to plugins
in the markup text with new ids.

plugin_markup(self) should return JavaScript code for anonymous function
which construct plugin markup given plugin_id, icon_src and
icon_alt arguments. It should be marked as safe to prevent escaping.

plugin_regexp(self) should return JavaScript code for anonymous function
which construct plugin regexp given plugin_id. It should be marked as safe to
prevent escaping.

Some markups support dynamically rendered output (like macros) which could be
rendered every time differently. If your markup supports this you can set
is_dynamic to True and this will then give users an option to enable
rendering of the content every time the page (markup plugin) is displayed
(default value is configured by CMS_MARKUP_RENDER_ALWAYS setting).
Otherwise the content is rendered only once, when saved.

Developer info

setup test environment

Create virtual env:

~$ virtualenv ~/cms_markup_env
~$ cd cms_markup_env/
~/cms_markup_env$ source bin/activate

Install as editable from git, read-only:

(cms_markup_env)~/cms_markup_env$ pip install -e git+https://github.com/mitar/cmsplugin-markup.git#egg=cmsplugin-markup

If you have git write access:

(cms_markup_env)~/cms_markup_env$ pip install -e git+git@github.com:mitar/cmsplugin-markup.git#egg=cmsplugin-markup

To run unittests:

~$ cd cms_markup_env/
~/cms_markup_env$ source bin/activate
(cms_markup_env)~/cms_markup_env$ cd src/cmsplugin-markup
(cms_markup_env)~/cms_markup_env$./setup.py test

 nav.xhtml

 Table of Contents

 		cmsplugin-markup's documentation

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

